If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-20x-225=0
a = 4; b = -20; c = -225;
Δ = b2-4ac
Δ = -202-4·4·(-225)
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20\sqrt{10}}{2*4}=\frac{20-20\sqrt{10}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20\sqrt{10}}{2*4}=\frac{20+20\sqrt{10}}{8} $
| 6x5280=31680 | | 3e=37 | | 3e=123 | | 2(x)^2-10x=12 | | (=10y)2 | | (X-1)+(1.1-y)=1.1 | | -4u-2=-2(u-8) | | x=70+50 | | 3x-8+117+125=360 | | x+8+65+78=180 | | 5-3(x-4)=8(x-4)=8x-32 | | x-7=3x+14 | | 31+x=2(8+x) | | (180/(x-4))-(180/x)=16 | | (3x+21)=(6) | | (41)+(3v)=5v-9 | | (t+49)+(37)=7t-10 | | (c-17)+(c)=c+40 | | (t+20)+(t+20)=t+50 | | (b-39)+(b)=b+43 | | (a-1)+(a)=a+49 | | 11x+3.5=90 | | (y-3)+(y)=y+38 | | (p-50)+(p)=p+37 | | p-50=p+73 | | u+1+u+11+u+41=180 | | p+19+4p+8p+18=180 | | 4z-4+6z-11+4z-15=180 | | v+30+110+3v=180 | | 45+3t+2t=180 | | 5z+4z+3z=180 | | s-49+s-35+30=180 |